Problem Analysis Session

SWERC judges

January 26, 2020

Statistics

Number of submissions: about 1400

Number of clarification requests: 35 (28 answered "No comment.")

I – Rats

Solved by all the teams before freeze. First solved after 3 min by **UnivRennes ISTIC**.

I – Rats

This was the easiest problem of the contest.

Problem

Use mark-recapture to estimate the size of an animal population.

Solution

Given

- n_1 : number of animals captured and marked on the first day
- n_2 : number of animals captured on the second day
- *n*₁₂: number of animals recaptured (and thus already marked) Use the Chapman estimator formula directly:

population size =
$$\left\lfloor \frac{(n_1 + 1)(n_2 + 1)}{n_{12} + 1} - 1 \right\rfloor$$

No need for floats.

B – Biodiversity

Solved by all the teams before freeze. First solved after 3 min by **Télécommander**.

B – Biodiversity

Problem (easy)

Computing the majority (more than half of the total) of N strings.

Solution (linear time and space)

Use a standard **hash table** to compute the number of occurences of each string and look for one that appears more than N/2 times.

Alternate Solution (linear time and space)

Use Boyer-Moore algorithm to find a candidate and check if the candidate actually appears more than N/2 times:

 $count \leftarrow 0$ for each string *S* do if count = 0 then $candidate \leftarrow S$ if S = candidate then $count \leftarrow count + 1$ else $count \leftarrow count - 1$

C - Ants

Solved by 94 teams before freeze. First solved after 7 min by **Rubber Duck Forces**.

C – Ants

This was an easy problem.

Problem: Minimum Excluded a.k.a. mex

Find the smallest *natural* number out of $\{X_1, X_2, \ldots, X_N\}$.

Straightforward solution

Store all the X_i in a set (e.g. a hash table), then linearly check for 0, 1, ...

A better solution

- The answer necessarily belongs to $\{0, 1, \dots, N\}$.
- So we can use an array and ignore values out of that interval.

A more challenging variant

Do it in place.

Solved by 63 teams before freeze. First solved after 15 min by **UPC-1**.

Problem

Given N polygons, compute their total area.

Problem

Given N polygons, compute their total area.

Remark

Polygons can be treated separately.

Problem

Given N polygons, compute their total area.

Remark

Polygons can be treated separately.

 \Rightarrow How to compute the area of a polygon?

Solved by 22 teams before freeze. First solved after 39 min by **UPC-1**.

Problem

Given a vertex T in a directed graph \mathcal{P} , find all nodes n such that the edge (n, T) is the only path from n to T.

Problem

Given a vertex T in a directed graph \mathcal{P} , find all nodes n such that the edge (n, T) is the only path from n to T.

Naive approach

Remove (n, T) and check whether you can still reach T. This requires |V| DFSs, i.e., $|V| \times |E| \approx 10^{10}$ operations. \Rightarrow How do we cut the search?

Auxiliary graph

 \mathcal{P}^* : Remove all edges leading to \mathcal{T}

Auxiliary graph

 \mathcal{P}^* : Remove all edges leading to \mathcal{T}

n is a solution when there is no other node *n'* where the edge $n' \to T$ is in \mathcal{P} and there is a path from *n* to *n'* in \mathcal{P}^* .

Simplified algorithm

For each n, find some n' satisfying the previous requirements and stop the search to cut branches.

Simplified algorithm

Call annotate(r, r) for each r predecessor of T:

- goal(n) is a set of predecessors of T that are accessible from n in P* (with at most 2 elements)
- a predecessor *n* of *T* is a solution iff |goal(n)| = 1 (contains only *n*).

```
annotate(n, r):

if r \in \text{goal}(n): stop

if |\text{goal}(n)| \ge 2: stop

goal(n) \leftarrow \text{goal}(n) \cup \{r\}

for each (u, n) \in \mathcal{P}^*: annotate(u, r)
```

A – Environment-Friendly Travel

Solved by 19 teams before freeze. First solved after 43 min by **UNIBOis**.

A – Environment-Friendly Travel

Problem

Given two distances d_1 (CO₂-cost), d_2 (Euclidean distance) on a graph G, find the smallest $d_1(s, t)$ such that $d_2(s, t) \leq B$.

E.g., for a budget of B = 15:

- The **shortest path** (distance) costs too much CO₂.
- The cheapest path is too long.
- The best one is the **red** path.
Problem

Given two distances d_1 (CO₂), d_2 (Euclidean distance) on a graph *G*, find the smallest $d_1(s, t)$ such that $d_2(s, t) \leq B$.

Solution

Run a shortest-path algorithm (Dijkstra) on the cost graph (d_1) , keep only the paths for which $d_1 \leq B$.

Solved by 11 teams before freeze. First solved after 48 min by **ENS UIm 1**.

Problem: Cartesian trees

Count the number of integer-labelled binary trees which:

- have the min-heap property, and
- have a given integer sequence as their in-order traversal.

Basic DP solution (too slow)

How many trees for a given sub-sequence? Complexity: $\mathcal{O}(n^3)$.

Choosing one of these trees:

2, 3, 1, 2, 2, 1, 1, 3, 2, 3

Choosing one of these trees:

Locate the occurrences of the minimum of the sequence

 $2, 3, {\color{red}1}, 2, 2, {\color{red}1}, {\color{red}1}, 3, 2, 3$

Choosing one of these trees:

- Locate the occurrences of the minimum of the sequence
- ② Choose an arrangement of these nodes at the top of the tree
 - Number of choices: Catalan number $C_n = \frac{1}{n+1} {\binom{2n}{n}}$

2, 3, 1, 2, 2, 1, 1, 3, 2, 3

Choosing one of these trees:

- O Locate the occurrences of the minimum of the sequence
- ② Choose an arrangement of these nodes at the top of the tree
 - Number of choices: Catalan number $C_n = \frac{1}{n+1} {\binom{2n}{n}}$
- Obose the sub-trees recursively, for each of the delimited sub-sequences.

2, 3, 1, 2, 2, 1, 1, 3, 2, 3

Choosing one of these trees:

- O Locate the occurrences of the minimum of the sequence
- Oboose an arrangement of these nodes at the top of the tree
 - Number of choices: Catalan number $C_n = \frac{1}{n+1} {\binom{2n}{n}}$
- Ochoose the sub-trees recursively, for each of the delimited sub-sequences.

Total complexity: $\mathcal{O}(n^2)$, or $\mathcal{O}(n \log n)$ with a min-range data structure.

2, 3, 1, 2, 2, 1, 1, 3, 2, 3

The result is a product of Catalan numbers.

Each factor C_n corresponds to a group of n elements of the sequence which:

- have the same value,
- is not separated by a smaller element.

We can compute these groups using a stack in one pass on the sequence.

 $\Rightarrow \mathcal{O}(n)$ algorithm

 \Rightarrow All included: 15 lines of simple Python code!

H – Pseudo-Random Number Generator

Solved by 4 teams before freeze. First solved after 78 min by **LaStatale Blue**.

Problem

A pseudo-random number generator for 40-bit unsigned integers is defined as the iteration of a function f, that is,

 S_0 = some given value, S_{i+1} = $f(S_i)$.

Find the number of even values in the sequence $S_0, S_1, \ldots, S_{N-1}$.

Limits

The number N can be large (up to 2^{63}) so we cannot simply compute all the values.

H – Pseudo-Random Number Generator

Analysis

Since there are finitely-many values, the sequence S eventually cycles after a certain point: there exist $period \ge 1$ and $start \ge 0$ such that

$$S_{i+period} = S_i$$
 for $i \ge start$.

Idea

Before submission,

- find *period* and *start*;
- pre-compute the number of even values for
 - the whole initial sequence $S_0, S_1, \ldots, S_{start-1}$,
 - the whole cycle $S_{start}, S_{start+1}, \ldots, S_{start+period-1}$,
 - blocks of consecutive S_i (e.g. 1000 blocks in total).

Submit a code that tests whether N < start or $N = start + q \cdot period + r$ with $0 \le r < period$ and uses the pre-computed values.

H – Pseudo-Random Number Generator

Cycle detection

We are left with the problem of finding *period* and *start*. Storing all S_i until we find the cycle requires too much memory.

Solution

Use Floyd's *tortoise and hare* algorithm: $t, h \leftarrow 0, 1$ while $S_t \neq S_h$ do $t, h \leftarrow t + 1, h + 2$ $i \leftarrow 0$ while $S_i \neq S_{t+i}$ do $i \leftarrow i + 1$

[See The Art of Computer Programming, volume 2, page 7, exercise 6.]

Efficiency

Precomputation: O(start + period). (In our case, period = 182129209 and start = 350125310.) Submitted solution is O(1).

SWERC judges

L – River Game

Solved by 2 teams before freeze. First solved after 133 min by **EP Chopper**.

L – River Game

Problem

Two players take turns to place cameras on a $N \times N$ grid with firm ground, wet zone and protected zone squares. Rivers are connected components of wet squares.

Rules:

- Cameras must be on firm ground, adjacent to a river.
- No two cameras on same square.

• No two cameras adjacent to the same river can be adjacent. River properties:

• Contain at most 2N squares.

• Any two squares from two different rivers are at least 3 squares apart. Who will win the game (assuming optimal play)?

Limits: $N \leq 10$

Brute force solution

• State is the $N \times N$ grid with already placed cameras marked.

• Complexity $\geq \mathcal{O}(2^{N \times N})$. Too slow.

L – River Game

Faster solution: Key idea

- **Shore**: connected component of firm ground squares adjacent to a given river.
- Cameras on one shore don't affect cameras on other shores!

SWERC judges

Faster solution

- Decompose the game into K independent games (K = number of shores, ≤ N² and in practice much less).
- Compute the Grundy number G_i of each shore. Computed in $\mathcal{O}(S \times 2^S)$ where $S = \max$ maximum shore size.
- Position is losing iff $G_0 \oplus \ldots \oplus G_K = 0$.
- $S \leq 3N + o(3N)$. For N = 10 bound is tighter: $S \leq 20$.
- For N = 10, takes less than 100×2^{20} operations.

Grundy Numbers computation

```
def GrundyNumber(state):
next_states = list of possible next states after
    adding a camera
next_grundy = set()
for s in next_states:
    next_grundy.add(GrundyNumber(s))
# Compute smallest non-negative integer not in
# next_grundy (problem Ants!).
res = 0
while res in next_grundy: res += 1
return res
```

Solved by 3 teams before freeze. First solved after 145 min by **UPC-1**.

Problem

Given a word w on an alphabet A and a set $S \subseteq A^2$ of pairs of letters that commute with each other, find the smallest word \overline{w} equivalent to w.

Limits

```
• A is small: |A| \leq 200;
```

```
• w can be long: |w| \leq 100\,000.
```

We can work in time $\mathcal{O}(|A|^2 |w|)$ but not $\Omega(|w|^2)$.

Idea

- For each letter λ , find the longest prefix w_{λ} of w that commutes with λ and does not contain λ .
- The first letter of \overline{w} is the smallest μ such that $w_{\mu}\mu$ is a prefix of w.

Idea

- For each letter λ , find the longest prefix w_{λ} of w that commutes with λ and does not contain λ .
- The first letter of \overline{w} is the smallest μ such that $w_{\mu}\mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ} .

Idea

- For each letter λ , find the longest prefix w_{λ} of w that commutes with λ and does not contain λ .
- The first letter of \overline{w} is the smallest μ such that $w_{\mu}\mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ} .

Example:	<i>w</i> =	= 3	412	31,	wit	h 1	2 =	21, $14 = 41$, $23 = 32$ and $24 = 42$
w:		3	4	1	2	3	1	\overline{W} :
<i>w</i> ₁ :								
<i>w</i> ₂ :								
W3:								
<i>w</i> ₄ :								

Idea

- For each letter λ , find the longest prefix w_{λ} of w that commutes with λ and does not contain λ .
- The first letter of \overline{w} is the smallest μ such that $w_{\mu}\mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ} .

Idea

- For each letter λ , find the longest prefix w_{λ} of w that commutes with λ and does not contain λ .
- The first letter of \overline{w} is the smallest μ such that $w_{\mu}\mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ} .

Idea

- For each letter λ , find the longest prefix w_{λ} of w that commutes with λ and does not contain λ .
- The first letter of \overline{w} is the smallest μ such that $w_{\mu}\mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ} .

Idea

- For each letter λ , find the longest prefix w_{λ} of w that commutes with λ and does not contain λ .
- The first letter of \overline{w} is the smallest μ such that $w_{\mu}\mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ} .

Idea

- For each letter λ , find the longest prefix w_{λ} of w that commutes with λ and does not contain λ .
- The first letter of \overline{w} is the smallest μ such that $w_{\mu}\mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ} .

Idea

- For each letter λ , find the longest prefix w_{λ} of w that commutes with λ and does not contain λ .
- The first letter of \overline{w} is the smallest μ such that $w_{\mu}\mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ} .

Idea

- For each letter λ , find the longest prefix w_{λ} of w that commutes with λ and does not contain λ .
- The first letter of \overline{w} is the smallest μ such that $w_{\mu}\mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ} .

Idea

- For each letter λ , find the longest prefix w_{λ} of w that commutes with λ and does not contain λ .
- The first letter of \overline{w} is the smallest μ such that $w_{\mu}\mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ} .

Idea

- For each letter λ , find the longest prefix w_{λ} of w that commutes with λ and does not contain λ .
- The first letter of \overline{w} is the smallest μ such that $w_{\mu}\mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ} .

Idea

- For each letter λ , find the longest prefix w_{λ} of w that commutes with λ and does not contain λ .
- The first letter of \overline{w} is the smallest μ such that $w_{\mu}\mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ} .

Idea

- For each letter λ , find the longest prefix w_{λ} of w that commutes with λ and does not contain λ .
- The first letter of \overline{w} is the smallest μ such that $w_{\mu}\mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ} .

Idea

- For each letter λ , find the longest prefix w_{λ} of w that commutes with λ and does not contain λ .
- The first letter of \overline{w} is the smallest μ such that $w_{\mu}\mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ} .

Idea

- For each letter λ , find the longest prefix w_{λ} of w that commutes with λ and does not contain λ .
- The first letter of \overline{w} is the smallest μ such that $w_{\mu}\mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ} .

Idea

- For each letter λ , find the longest prefix w_{λ} of w that commutes with λ and does not contain λ .
- The first letter of \overline{w} is the smallest μ such that $w_{\mu}\mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ} .

Idea

- For each letter λ , find the longest prefix w_{λ} of w that commutes with λ and does not contain λ .
- The first letter of \overline{w} is the smallest μ such that $w_{\mu}\mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ} .

Idea

- For each letter λ , find the longest prefix w_{λ} of w that commutes with λ and does not contain λ .
- The first letter of \overline{w} is the smallest μ such that $w_{\mu}\mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ} .

Idea

Find the letters of \overline{w} one by one, from left to right:

- For each letter λ , find the longest prefix w_{λ} of w that commutes with λ and does not contain λ .
- The first letter of \overline{w} is the smallest μ such that $w_{\mu}\mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ} .

Time complexity: $\mathcal{O}(|A||w|)$

D – Gnalcats

Solved by 8 teams before freeze. First solved after 161 min by **mETH**.

D – Gnalcats

Problem

Stack language, inspired by Tezos' smart contract language Michelson.

Programs work on an infinite stack of values.

Values are either a pair of values or a non-pair.

Prove the equivalence of two programs on input stacks of non-pair values.

Instructions	
COPY	Copy top value (DUP)
DROP	Drop top value (DROP)
SWAP	Swap top two values (SWAP)
$\mathbf{P}_{\mathrm{AIR}}$	Construct pair from top two values (PAIR)
$\boldsymbol{U}_{\mathrm{NPAIR}}$	Destruct top pair (UNPAIR), FAIL on non-pair values
LEFT	Replace top pair by its left component (CAR) \equiv <code>USD</code>
$\mathbf{R}_{\mathrm{IGHT}}$	Replace top pair by its right component (CDR) \equiv $old D$

D - Gnalcats

Solution

Symbolic evaluation

- give a unique identifier to elements of the input stack (first $10^5 + 2$ elements are enough)
- evaluate both programs on this symbolic input stack (linear in program size)
- compare symbolic output stacks (linear in output stack overall sizes)

But...

Values can grow exponentially!

E.g. Pair Copy Pair Copy Pair Copy ...

D – Gnalcats

But...

Values can grow exponentially! E.g. PAIR COPY PAIR COPY ...

Solution

Hash-consing

- give the same identifier to all pairs constructed from the same elements
- use a hash table $\langle \textit{left_id}, \textit{right_id} \rangle \rightarrow \textit{pair_id}$

Complexity of comparison becomes linear in the size of stacks ($\leq 10^5$).

Even better (not necessary here)

- Represent stacks as pairs $\langle top, rest \rangle$
- Allows comparison in $\mathcal{O}(1)$

Or worse: use congruence-closure with a union-find

E – Pixels

Problem

You are given:

- a grid g of black/white pixels: all pixels are white at start;
- a family of controllers: pressing c switches the pixels in a set S_c ;
- a target grid t.

Can you draw the grid t? If yes, by pressing which controllers?

Limits

- g and t can be long: $|g| = |t| = KL \leq 100000$;
- for each controller, $|S_c| \leq 5$;
- controllers are arranged along a grid: sets S_c are very regular.

We can work in time $\mathcal{O}(\min\{K, L\}KL) \leq \mathcal{O}((KL)^{3/2})$ but not $\Omega((KL)^2)$.

Idea: Reduce the problem to solving a linear equation in $\mathbb{F}_2^{\mathsf{KL}}$

- One pixel = one element of \mathbb{F}_2
- Grids v and t = vectors in \mathbb{F}_2^{KL}
- Family of sets S_c = sparse (KL) × (KL) matrix M
- Pressing a set C of controllers = Obtaining the vector $M \cdot C$

Solution

Use Gaussian elimination, starting from the controllers associated with top-left pixels, and find a C such that $M \cdot C = t$ (if any).

Time complexity: $\mathcal{O}(\min\{K, L\}KL)$