Problem Analysis Session

SWERC judges

January 26, 2020

Statistics

Number of clarification requests: 35 (28 answered "No comment.") Attempted

Accepted

I - Rats

Solved by all the teams before freeze.
First solved after 3 min by UnivRennes ISTIC.

- correct
- wrong-answer
timelimit
-run-error
compiler-error
- no-output

I - Rats

This was the easiest problem of the contest.

Problem

Use mark-recapture to estimate the size of an animal population.

Solution

Given

- n_{1} : number of animals captured and marked on the first day
- n_{2} : number of animals captured on the second day
- n_{12} : number of animals recaptured (and thus already marked) Use the Chapman estimator formula directly:

$$
\text { population size }=\left\lfloor\frac{\left(n_{1}+1\right)\left(n_{2}+1\right)}{n_{12}+1}-1\right\rfloor
$$

No need for floats.

B - Biodiversity

Solved by all the teams before freeze. First solved after 3 min by Télécommander.

correct wrong-answer

- timelimit
-run-error
compiler-error
- no-output

B - Biodiversity

Problem (easy)

Computing the majority (more than half of the total) of N strings.

Solution (linear time and space)

Use a standard hash table to compute the number of occurences of each string and look for one that appears more than $N / 2$ times.

Alternate Solution (linear time and space)

Use Boyer-Moore algorithm to find a candidate and check if the candidate actually appears more than $N / 2$ times:

```
count }\leftarrow
for each string S do
    if count =0 then candidate }\leftarrow
    if S= candidate then count }\leftarrow\mathrm{ count +1
    else count }\leftarrow\mathrm{ count - 1
```


C - Ants

Solved by 94 teams before freeze.
First solved after 7 min by Rubber Duck Forces.

C - Ants

This was an easy problem.
Problem: Minimum Excluded a.k.a. mex
Find the smallest natural number out of $\left\{X_{1}, X_{2}, \ldots, X_{N}\right\}$.

Straightforward solution

Store all the X_{i} in a set (e.g. a hash table), then linearly check for $0,1, \ldots$

A better solution

- The answer necessarily belongs to $\{0,1, \ldots, N\}$.
- So we can use an array and ignore values out of that interval.

A more challenging variant

Do it in place.

F - Icebergs

Solved by 63 teams before freeze.
First solved after 15 min by UPC-1.

F - Icebergs

Problem

Given N polygons, compute their total area.

F - Icebergs

Problem

Given N polygons, compute their total area.

Remark
 Polygons can be treated separately.

F - Icebergs

Problem

Given N polygons, compute their total area.

Remark
 Polygons can be treated separately.

\Rightarrow How to compute the area of a polygon?

F - Icebergs

K - Bird Watching

Solved by 22 teams before freeze.
First solved after 39 min by UPC-1.

K - Bird Watching

Problem

Given a vertex T in a directed graph \mathcal{P}, find all nodes n such that the edge (n, T) is the only path from n to T.

K - Bird Watching

Problem

Given a vertex T in a directed graph \mathcal{P}, find all nodes n such that the edge (n, T) is the only path from n to T.

Naive approach

Remove (n, T) and check whether you can still reach T.
This requires $|V|$ DFSs, i.e., $|V| \times|E| \approx 10^{10}$ operations.
\Rightarrow How do we cut the search?

K - Bird Watching

Auxiliary graph
\mathcal{P}^{*} : Remove all edges leading to T

K - Bird Watching

Auxiliary graph
\mathcal{P}^{*} : Remove all edges leading to T
n is a solution when there is no other node n^{\prime} where the edge $n^{\prime} \rightarrow T$ is in \mathcal{P} and there is a path from n to n^{\prime} in \mathcal{P}^{*}.

n is a solution, a is not $\left(b=n^{\prime}\right)$

K - Bird Watching

Simplified algorithm

For each n, find some n^{\prime} satisfying the previous requirements and stop the search to cut branches.

K - Bird Watching

Simplified algorithm

Call annotate (r, r) for each r predecessor of T :

- goal (n) is a set of predecessors of T that are accessible from n in \mathcal{P}^{*} (with at most 2 elements)
- a predecessor n of T is a solution iff $|\operatorname{goal}(n)|=1$ (contains only n).

```
annotate(n,r):
if r\ingoal(n): stop
if }|\operatorname{goal}(n)|\geqslant2: sto
goal (n)\leftarrow\operatorname{goal}(n)\cup{r}
for each (u,n) \in \mathcal{P}}\mp@subsup{}{}{*}\mathrm{ : annotate(u,r)
```


A - Environment-Friendly Travel

Solved by 19 teams before freeze.
First solved after 43 min by UNIBOis.

A - Environment-Friendly Travel

Problem

Given two distances d_{1} (CO_{2}-cost), d_{2} (Euclidean distance) on a graph G, find the smallest $d_{1}(s, t)$ such that $d_{2}(s, t) \leqslant B$.

E.g., for a budget of $B=15$:
(1) The shortest path (distance) costs too much CO_{2}.
(2) The cheapest path is too long.
(3) The best one is the red path.

A - Environment-Friendly Travel

Problem

Given two distances $d_{1}\left(\mathrm{CO}_{2}\right), d_{2}$ (Euclidean distance) on a graph G, find the smallest $d_{1}(s, t)$ such that $d_{2}(s, t) \leqslant B$.

Solution

Run a shortest-path algorithm (Dijkstra) on the cost graph $\left(d_{1}\right)$, keep only the paths for which $d_{1} \leqslant B$.

J - Counting Trees

Solved by 11 teams before freeze.
First solved after 48 min by ENS Ulm 1.

J - Counting Trees

Problem: Cartesian trees

Count the number of integer-labelled binary trees which:

- have the min-heap property, and
- have a given integer sequence as their in-order traversal.

Basic DP solution (too slow)

How many trees for a given sub-sequence? Complexity: $\mathcal{O}\left(n^{3}\right)$.

J - Counting Trees

Choosing one of these trees:

$$
2,3,1,2,2,1,1,3,2,3
$$

J - Counting Trees

Choosing one of these trees:
(1) Locate the occurrences of the minimum of the sequence

$$
2,3,1,2,2,1,1,3,2,3
$$

J - Counting Trees

Choosing one of these trees:
(1) Locate the occurrences of the minimum of the sequence
(2) Choose an arrangement of these nodes at the top of the tree - Number of choices: Catalan number $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$

$$
2,3,1,2,2,1,1,3,2,3
$$

J - Counting Trees

Choosing one of these trees:
(1) Locate the occurrences of the minimum of the sequence
(2) Choose an arrangement of these nodes at the top of the tree - Number of choices: Catalan number $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$
(3) Choose the sub-trees recursively, for each of the delimited sub-sequences.

$$
2,3,1,2,2,1,1,3,2,3
$$

J - Counting Trees

Choosing one of these trees:
(1) Locate the occurrences of the minimum of the sequence
(2) Choose an arrangement of these nodes at the top of the tree

- Number of choices: Catalan number $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$
(3) Choose the sub-trees recursively, for each of the delimited sub-sequences.
Total complexity: $\mathcal{O}\left(n^{2}\right)$, or $\mathcal{O}(n \log n)$ with a min-range data structure.

$$
2,3,1,2,2,1,1,3,2,3
$$

J - Counting Trees

Simpler algorithm

The result is a product of Catalan numbers.
Each factor C_{n} corresponds to a group of n elements of the sequence which:

- have the same value,
- is not separated by a smaller element.

We can compute these groups using a stack in one pass on the sequence.
$\Rightarrow \mathcal{O}(n)$ algorithm
\Rightarrow All included: 15 lines of simple Python code!

H - Pseudo-Random Number Generator

Solved by 4 teams before freeze.
First solved after 78 min by LaStatale Blue.

H - Pseudo-Random Number Generator

Problem

A pseudo-random number generator for 40-bit unsigned integers is defined as the iteration of a function f, that is,

$$
\begin{aligned}
S_{0} & =\text { some given value, } \\
S_{i+1} & =f\left(S_{i}\right)
\end{aligned}
$$

Find the number of even values in the sequence $S_{0}, S_{1}, \ldots, S_{N-1}$.

Limits

The number N can be large (up to 2^{63}) so we cannot simply compute all the values.

H - Pseudo-Random Number Generator

Analysis

Since there are finitely-many values, the sequence S eventually cycles after a certain point: there exist period ≥ 1 and start ≥ 0 such that

$$
S_{i+\text { period }}=S_{i} \quad \text { for } i \geq \text { start. }
$$

Idea

Before submission,

- find period and start;
- pre-compute the number of even values for
- the whole initial sequence $S_{0}, S_{1}, \ldots, S_{s t a r t-1}$,
- the whole cycle $S_{\text {start }}, S_{\text {start }+1}, \ldots, S_{\text {start+period }-1}$,
- blocks of consecutive S_{i} (e.g. 1000 blocks in total).

Submit a code that tests whether $N<$ start or $N=s t a r t+q \cdot$ period $+r$ with $0 \leq r<$ period and uses the pre-computed values.

H - Pseudo-Random Number Generator

Cycle detection

We are left with the problem of finding period and start. Storing all S_{i} until we find the cycle requires too much memory.

Solution

Use Floyd's tortoise and hare algorithm:
$t, h \leftarrow 0,1$
while $S_{t} \neq S_{h}$ do $t, h \leftarrow t+1, h+2$
$i \leftarrow 0$
while $S_{i} \neq S_{t+i}$ do $i \leftarrow i+1$
[See The Art of Computer Programming, volume 2, page 7, exercise 6.]

Efficiency

Precomputation: $\mathcal{O}($ start + period $)$.
(In our case, period $=182129209$ and start $=350125310$.)
Submitted solution is $\mathcal{O}(1)$.

L - River Game

Solved by 2 teams before freeze.
First solved after 133 min by EP Chopper.

L - River Game

Problem

Two players take turns to place cameras on a $N \times N$ grid with firm ground, wet zone and protected zone squares. Rivers are connected components of wet squares.
Rules:

- Cameras must be on firm ground, adjacent to a river.
- No two cameras on same square.
- No two cameras adjacent to the same river can be adjacent.

River properties:

- Contain at most $2 N$ squares.
- Any two squares from two different rivers are at least 3 squares apart. Who will win the game (assuming optimal play)?

$$
\text { Limits: } \quad N \leq 10
$$

L - River Game

Brute force solution

- State is the $N \times N$ grid with already placed cameras marked.
- Complexity $\geq \mathcal{O}\left(2^{N \times N}\right)$. Too slow.

L - River Game

Faster solution: Key idea

- Shore: connected component of firm ground squares adjacent to a given river.
- Cameras on one shore don't affect cameras on other shores!

L - River Game

Faster solution

- Decompose the game into K independent games ($K=$ number of shores, $\leq N^{2}$ and in practice much less).
- Compute the Grundy number G_{i} of each shore. Computed in $\mathcal{O}\left(S \times 2^{S}\right)$ where $S=$ maximum shore size.
- Position is losing iff $G_{0} \oplus \ldots \oplus G_{K}=0$.
- $S \leq 3 N+o(3 N)$. For $N=10$ bound is tighter: $S \leq 20$.
- For $N=10$, takes less than 100×2^{20} operations.

L - River Game

Grundy Numbers computation

```
def GrundyNumber(state):
    next_states = list of possible next states after
                adding a camera
    next_grundy = set()
    for s in next_states:
            next_grundy.add (GrundyNumber(s))
    # Compute smallest non-negative integer not in
    # next_grundy (problem Ants!).
    res = 0
    while res in next_grundy: res += 1
    return res
```


G - Swapping Places

Solved by 3 teams before freeze.
First solved after 145 min by UPC-1.

G - Swapping Places

Problem

Given a word w on an alphabet A and a set $S \subseteq A^{2}$ of pairs of letters that commute with each other, find the smallest word \bar{w} equivalent to w.

Limits

- A is small: $|A| \leqslant 200$;
- w can be long: $|w| \leqslant 100000$.

We can work in time $\mathcal{O}\left(|A|^{2}|w|\right)$ but not $\Omega\left(|w|^{2}\right)$.

G - Swapping Places

Idea

Find the letters of \bar{w} one by one, from left to right:

- For each letter λ, find the longest prefix w_{λ} of w that commutes with λ and does not contain λ.
- The first letter of \bar{w} is the smallest μ such that $w_{\mu} \mu$ is a prefix of w.

G - Swapping Places

Idea

Find the letters of \bar{w} one by one, from left to right:

- For each letter λ, find the longest prefix w_{λ} of w that commutes with λ and does not contain λ.
- The first letter of \bar{w} is the smallest μ such that $w_{\mu} \mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ}.

G - Swapping Places

Idea

Find the letters of \bar{w} one by one, from left to right:

- For each letter λ, find the longest prefix w_{λ} of w that commutes with λ and does not contain λ.
- The first letter of \bar{w} is the smallest μ such that $w_{\mu} \mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ}.

Example: $w=341231$, with $12=21,14=41,23=32$ and $24=42$

$w:$	3	4	1	2	3	1	$\bar{w}:$
$w_{1}:$							
$w_{2}:$							
$w_{3}:$							
$w_{4}:$							

G - Swapping Places

Idea

Find the letters of \bar{w} one by one, from left to right:

- For each letter λ, find the longest prefix w_{λ} of w that commutes with λ and does not contain λ.
- The first letter of \bar{w} is the smallest μ such that $w_{\mu} \mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ}.

Example: $w=341231$, with $12=21,14=41,23=32$ and $24=42$

$w_{1}:$	3	4	1	2	3	1	$\bar{w}:$
$w_{1}: \longrightarrow$	3						
$w_{2}: \longrightarrow$							
$w_{3}: \longrightarrow$	3						
$w_{4}: \longrightarrow$	3						

G - Swapping Places

Idea

Find the letters of \bar{w} one by one, from left to right:

- For each letter λ, find the longest prefix w_{λ} of w that commutes with λ and does not contain λ.
- The first letter of \bar{w} is the smallest μ such that $w_{\mu} \mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ}.

Example: $w=341231$, with $12=21,14=41,23=32$ and $24=42$

| $w_{1}:$ | 3 | 4 | 1 | 2 | 3 | 1 | $\bar{w}:$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $w_{1}: \longrightarrow$ | 3 | | | | | | |
| $w_{2}: \longrightarrow$ | | | | | | | |
| $w_{3}: \longrightarrow$ | 3 | | | | | | |
| $w_{4}: \longrightarrow$ | 3 | | | | | | |

G - Swapping Places

Idea

Find the letters of \bar{w} one by one, from left to right:

- For each letter λ, find the longest prefix w_{λ} of w that commutes with λ and does not contain λ.
- The first letter of \bar{w} is the smallest μ such that $w_{\mu} \mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ}.

Example: $w=341231$, with $12=21,14=41,23=32$ and $24=42$

G - Swapping Places

Idea

Find the letters of \bar{w} one by one, from left to right:

- For each letter λ, find the longest prefix w_{λ} of w that commutes with λ and does not contain λ.
- The first letter of \bar{w} is the smallest μ such that $w_{\mu} \mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ}.

Example: $w=341231$, with $12=21,14=41,23=32$ and $24=42$

$w:$	3	4	1	\bullet	3	1	
$w_{1}: \longrightarrow$	3						
$w_{2}: \longrightarrow$							
$w_{3}: \longrightarrow$	3						
$w_{4}: \longrightarrow$							
3							

G - Swapping Places

Idea

Find the letters of \bar{w} one by one, from left to right:

- For each letter λ, find the longest prefix w_{λ} of w that commutes with λ and does not contain λ.
- The first letter of \bar{w} is the smallest μ such that $w_{\mu} \mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ}.

Example: $w=341231$, with $12=21,14=41,23=32$ and $24=42$

$w:$	3	4	1	\bullet	3	1	$\bar{w}: 2$
$w_{1}: \longrightarrow$	3						
$w_{2}: \longrightarrow$							
$w_{3}: \longrightarrow$							
$w_{4}: \longrightarrow$							

G - Swapping Places

Idea

Find the letters of \bar{w} one by one, from left to right:

- For each letter λ, find the longest prefix w_{λ} of w that commutes with λ and does not contain λ.
- The first letter of \bar{w} is the smallest μ such that $w_{\mu} \mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ}.

Example: $w=341231$, with $12=21,14=41,23=32$ and $24=42$

G - Swapping Places

Idea

Find the letters of \bar{w} one by one, from left to right:

- For each letter λ, find the longest prefix w_{λ} of w that commutes with λ and does not contain λ.
- The first letter of \bar{w} is the smallest μ such that $w_{\mu} \mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ}.

Example: $w=341231$, with $12=21,14=41,23=32$ and $24=42$

| $w:$ | \bullet | 4 | 1 | \bullet | 3 | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $w_{1}: \longrightarrow$ | | | | | | | |
| $w_{2}: \longrightarrow$ | | | | | | | |
| $w_{3}: \longrightarrow$ | | | | | | | |
| $w_{4}: \longrightarrow$ | | | 1 | | | | |

G - Swapping Places

Idea

Find the letters of \bar{w} one by one, from left to right:

- For each letter λ, find the longest prefix w_{λ} of w that commutes with λ and does not contain λ.
- The first letter of \bar{w} is the smallest μ such that $w_{\mu} \mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ}.

Example: $w=341231$, with $12=21,14=41,23=32$ and $24=42$

G - Swapping Places

Idea

Find the letters of \bar{w} one by one, from left to right:

- For each letter λ, find the longest prefix w_{λ} of w that commutes with λ and does not contain λ.
- The first letter of \bar{w} is the smallest μ such that $w_{\mu} \mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ}.

Example: $w=341231$, with $12=21,14=41,23=32$ and $24=42$

G - Swapping Places

Idea

Find the letters of \bar{w} one by one, from left to right:

- For each letter λ, find the longest prefix w_{λ} of w that commutes with λ and does not contain λ.
- The first letter of \bar{w} is the smallest μ such that $w_{\mu} \mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ}.

Example: $w=341231$, with $12=21,14=41,23=32$ and $24=42$

G - Swapping Places

Idea

Find the letters of \bar{w} one by one, from left to right:

- For each letter λ, find the longest prefix w_{λ} of w that commutes with λ and does not contain λ.
- The first letter of \bar{w} is the smallest μ such that $w_{\mu} \mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ}.

Example: $w=341231$, with $12=21,14=41,23=32$ and $24=42$

G - Swapping Places

Idea

Find the letters of \bar{w} one by one, from left to right:

- For each letter λ, find the longest prefix w_{λ} of w that commutes with λ and does not contain λ.
- The first letter of \bar{w} is the smallest μ such that $w_{\mu} \mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ}.

Example: $w=341231$, with $12=21,14=41,23=32$ and $24=42$

G - Swapping Places

Idea

Find the letters of \bar{w} one by one, from left to right:

- For each letter λ, find the longest prefix w_{λ} of w that commutes with λ and does not contain λ.
- The first letter of \bar{w} is the smallest μ such that $w_{\mu} \mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ}.

Example: $w=341231$, with $12=21,14=41,23=32$ and $24=42$

G - Swapping Places

Idea

Find the letters of \bar{w} one by one, from left to right:

- For each letter λ, find the longest prefix w_{λ} of w that commutes with λ and does not contain λ.
- The first letter of \bar{w} is the smallest μ such that $w_{\mu} \mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ}.

Example: $w=341231$, with $12=21,14=41,23=32$ and $24=42$

G - Swapping Places

Idea

Find the letters of \bar{w} one by one, from left to right:

- For each letter λ, find the longest prefix w_{λ} of w that commutes with λ and does not contain λ.
- The first letter of \bar{w} is the smallest μ such that $w_{\mu} \mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ}.

Example: $w=341231$, with $12=21,14=41,23=32$ and $24=42$

G - Swapping Places

Idea

Find the letters of \bar{w} one by one, from left to right:

- For each letter λ, find the longest prefix w_{λ} of w that commutes with λ and does not contain λ.
- The first letter of \bar{w} is the smallest μ such that $w_{\mu} \mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ}.

Example: $w=341231$, with $12=21,14=41,23=32$ and $24=42$

G - Swapping Places

Idea

Find the letters of \bar{w} one by one, from left to right:

- For each letter λ, find the longest prefix w_{λ} of w that commutes with λ and does not contain λ.
- The first letter of \bar{w} is the smallest μ such that $w_{\mu} \mu$ is a prefix of w.
- Erase the leftmost occurrence of μ in w and update all prefixes w_{λ}.

Example: $w=341231$, with $12=21,14=41,23=32$ and $24=42$

Time complexity: $\mathcal{O}(|A||w|)$

D - Gnalcats

Solved by 8 teams before freeze.
First solved after 161 min by mETH.
wrong-answertimelimitrun-error
compiler-error

- no-output

D - Gnalcats

Problem

Stack language, inspired by Tezos' smart contract language Michelson.
Programs work on an infinite stack of values.
Values are either a pair of values or a non-pair.
Prove the equivalence of two programs on input stacks of non-pair values.

Instructions

Copy Copy top value (DUP)
Drop Drop top value (DROP)
Swap Swap top two values (SWAP)
Pair Construct pair from top two values (PAIR)
UnPAIR Destruct top pair (UNPAIR), FAIL on non-pair values
LEFT Replace top pair by its left component (CAR) \equiv USD
RIGHT Replace top pair by its right component (CDR) \equiv UD

D - Gnalcats

Solution

Symbolic evaluation

- give a unique identifier to elements of the input stack (first $10^{5}+2$ elements are enough)
- evaluate both programs on this symbolic input stack (linear in program size)
- compare symbolic output stacks (linear in output stack overall sizes)

But...

Values can grow exponentially!

```
E.g. Pair Copy Pair Copy Pair Copy ...
```


D - Gnalcats

But...

Values can grow exponentially! E.g. Pair Copy Pair Copy ...

Solution

Hash-consing

- give the same identifier to all pairs constructed from the same elements
- use a hash table 〈left_id, right_id〉 \rightarrow pair_id

Complexity of comparison becomes linear in the size of stacks $\left(\leq 10^{5}\right)$.

Even better (not necessary here)

- Represent stacks as pairs \langle top, rest \rangle
- Allows comparison in $\mathcal{O}(1)$

E - Pixels

Not solved before freeze.

timelimitrun-error

E - Pixels

Problem

You are given:

- a grid g of black/white pixels: all pixels are white at start;
- a family of controllers: pressing c switches the pixels in a set S_{c};
- a target grid t.

Can you draw the grid t ? If yes, by pressing which controllers?

Limits

- g and t can be long: $|g|=|t|=K L \leqslant 100000$;
- for each controller, $\left|S_{c}\right| \leqslant 5$;
- controllers are arranged along a grid: sets S_{c} are very regular. We can work in time $\mathcal{O}(\min \{K, L\} K L) \leqslant \mathcal{O}\left((K L)^{3 / 2}\right)$ but not $\Omega\left((K L)^{2}\right)$.

E - Pixels

Idea: Reduce the problem to solving a linear equation in $\mathbb{F}_{2}^{K L}$

- One pixel $=$ one element of \mathbb{F}_{2}
- Grids v and $t=$ vectors in $\mathbb{F}_{2}^{K L}$
- Family of sets $S_{c}=$ sparse $(K L) \times(K L)$ matrix M
- Pressing a set C of controllers $=$ Obtaining the vector $M \cdot C$

Solution

Use Gaussian elimination, starting from the controllers associated with top-left pixels, and find a C such that $M \cdot C=t$ (if any).

Time complexity: $\mathcal{O}(\min \{K, L\} K L)$

